
MKICS PL/SQL Packages

Prepared By Heena Patel (Asst. Prof) Page 1

PL/SQL packages are schema objects that holds other objects like procedures, functions ,

variables, constants, cursors and exceptions within it. It is the way of creating generic,

encapsulated and re-usable code.

ADVANTAGES OF USING PACKAGE :
• Enables the organization of commercial applications into efficient modules.

• Allows granting of privileges efficiently.

• All procedures and cursors that execute in this environment can share them.

• Enables the overloading of procedures and functions when required.

• Improve performance by loading multiple objects into memory at once.

• Promote code reuse through the use of libraries that contain stored Procedures and

functions, thereby reducing redundant coding.

A package will have two mandatory parts:

• Package specification

• Package body or definition

� Package Specification
The specification is the interface to the package. It contains:

� Name of the package

� Name of the data type of any arguments

� This declaration is local to the database and global to the package.

 It just DECLARES the types, variables, constants, exceptions, cursors, and subprograms

that can be referenced from outside the package. In other words, it contains all

information about the content of the package, but excludes the code for the subprograms.

All objects placed in the specification are called public objects. Any subprogram not in

the package specification but coded in the package body is called a private object.

Example :

CREATE PACKAGE cust_sal AS

PROCEDURE find_sal(c_id customers.id%type);

END cust_sal;/

Output:

Package created.

� Package Body
The package body has the codes for various methods declared in the package

Specification and other private declarations, which are hidden from code outside the

package.

The CREATE PACKAGE BODY Statement is used for creating the package body.

Example :

MKICS PL/SQL Packages

Prepared By Heena Patel (Asst. Prof) Page 2

The following code shows the package body declaration for the cust_sal package created

above. I assumed that we already have CUSTOMERS table created in our database.

CREATE OR REPLACE PACKAGE BODY cust_sal AS

PROCEDURE find_sal(c_id customers.id%TYPE) IS

c_sal customers.salary%TYPE;

BEGIN

SELECT salary INTO c_sal

FROM customers

WHERE id = c_id;

dbms_output.put_line('Salary: '|| c_sal);

END find_sal;

END cust_sal;/

Output:

Package body created.

� Using the Package Elements
The package elements (variables, procedures or functions) are accessed with the

following syntax:

 package_name.element_name;

Consider, we already have created above package in our database schema, the

following program uses the find_sal method of the cust_sal package:

DECLARE

code customers.id%type := &cc_id;

BEGIN

cust_sal.find_sal(code);

END;/

Output :

Enter value for cc_id: 1

Salary: 3000

PL/SQL procedure successfully completed.

Example:

The following program provides a more complete package. We will use the

CUSTOMERS table stored in our database with the following records:

Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 3000.00 |

| 2 | Khilan | 25 | Delhi | 3000.00 |

MKICS PL/SQL Packages

Prepared By Heena Patel (Asst. Prof) Page 3

| 3 | Chaitali | 25 | Mumbai | 7500.00 |

| 4 | Hardik | 27 | Bhopal | 9500.00 |

+----+----------+-----+-----------+----------+

The package specification:

CREATE OR REPLACE PACKAGE c_package AS

-- Adds a customer

PROCEDURE addCustomer(c_id customers.id%type,

c_name customers.name%type,c_age customers.age%type,

c_addr customers.address%type,c_sal customers.salary%type);

-- Removes a customer

PROCEDURE delCustomer(c_id customers.id%TYPE);

--Lists all customers

PROCEDURE listCustomer;

END c_package;

/

Package created.

Creating the package body:

CREATE OR REPLACE PACKAGE BODY c_package AS

PROCEDURE addCustomer(c_id customers.id%type,

c_name customers.name%type,c_age customers.age%type,

c_addr customers.address%type,c_sal customers.salary%type)

IS

BEGIN

INSERT INTO customers (id,name,age,address,salary)

VALUES(c_id, c_name, c_age, c_addr, c_sal);

END addCustomer;

PROCEDURE delCustomer(c_id customers.id%type) IS

BEGIN

DELETE FROM customers

WHERE id = c_id;

END delCustomer;

PROCEDURE listCustomer

 IS

rcust customers%ROWTYPE;

CURSOR c_cust is SELECT * FROM CUSTOMERS;

BEGIN

OPEN c_cust;

dbms_output.put_line('NAME ' ||'SALARY ');

LOOP

MKICS PL/SQL Packages

Prepared By Heena Patel (Asst. Prof) Page 4

FETCH c_cust into rcust;

EXIT WHEN c_cust%notfound;

dbms_output.put_line(rcust.name || ' ' || rcust.salary);

END LOOP;

CLOSE c_cust;

END listCustomer;

END c_package;

/

Package body created.

� Calling the Package:

The following program uses the methods declared and defined in the package

c_package.

EXECUTE c_package.addcustomer(5,’komal’,13,’baroda’,5000);

OR

CALL c_package.addcustomer(5,’komal’,13,’baroda’,5000);

OR

DECLARE

code customers.id%type:= 6;

BEGIN

c_package.addcustomer(5, 'Rajnish', 25, 'Chennai', 3500);

c_package.addcustomer(6, 'Subham', 32, 'Delhi', 7500);

c_package.listcustomer;

c_package.delcustomer(code);

c_package.listcustomer;

END;

/

OUTPUT:

NAME SALARY

Ramesh 3000

Khilan 3000

Chaitali 7500

Hardik 9500

Rajnish 3500

Subham 7500

NAME SALARY

Ramesh 3000

Khilan 3000

Chaitali 7500

Hardik 9500

MKICS PL/SQL Packages

Prepared By Heena Patel (Asst. Prof) Page 5

Rajnish 3500

PL/SQL procedure successfully completed

� Alterations To An Existing Package
ALTER PACKAGE command is used to recompile a package with compile keyword. It

compiles a package explicitly after modifications.

It recompiles all objects defined within the package.

Recompiling does not change the definition of package or any its objects.

Statement recompiles the package specification

ALTER PACKAGE <PackageName> COMPILE PACKAGE;

Statements recompile just the package body.

ALTER PACKAGE <PackageName> COMPILE BODY;

Example

ALTER PACKAGE c_package COMPILE BODY

Package body altered.

� All packages can be recompiled by using Oracle utility called dbms_utility.

Syntax:

EXECUTE DBMS_UTILITY.COMPILE_ALL

� PL/SQL Overloading Procedures And Functions
• A package is an Oracle object that can hold a number of other objects like

Procedures and functions.

• More than one procedure or function with the same name but with different

parameters can be defined within a package or within a PL/SQL declaration block.

• Multiple procedures that are declared with same name are called Overloaded

Procedures.

• Similarly, multiple functions that are declared with same name are called

Overloaded Functions.

For example if we want to get a customer either by specifying the customer id or by

specifying name, we could do it by writing following package:

Creating the package body:

CREATE OR REPLACE PACKAGE c_over_package AS

--Lists customer whose id is passed

PROCEDURE listCustomer(c_id cust.id%type);

--Lists customer whose name is passed

PROCEDURE listCustomer(c_name cust.name%type);

END c_over_package;

Package created.

MKICS PL/SQL Packages

Prepared By Heena Patel (Asst. Prof) Page 6

CREATE OR REPLACE PACKAGE BODY c_over_package AS

 PROCEDURE listCustomer(c_id cust.id%type) IS

c_name cust.name%type;

c_sal cust.salary%type;

 BEGIN

SELECT name,salary into c_name,c_sal

from cust where id=c_id;

dbms_output.put_line(c_id||' '|| c_name || ' ' ||c_sal);

 END listCustomer;

 PROCEDURE listCustomer(c_name cust.name%type) IS

c_id cust.id%type;

c_sal cust.salary%type;

 BEGIN

SELECT id,salary into c_id,c_sal

from cust where name=c_name;

dbms_output.put_line(c_id||' '|| c_name || ' ' ||c_sal);

 END listCustomer;

END c_over_package;

Package body created.

Output :

EXEC c_over_package.listCustomer (‘Komal’);

6 Komal 5000

PL/SQL procedure successfully completed.

EXEC c_over_package.listCustomer (3);

3 Kaushik 2500

PL/SQL procedure successfully completed.

� Where to overload functions and procedures.

� Inside the declaration section of a PL/SQL block.

� Inside the package.

� Restrictions On Overloading
Overloading can be very useful technique when same operation can be done on

arguments of different types. Overloading has several restrictions,

• The data subtype of at least one of the parameters of the overloaded function or

procedure must differ.

PROCEDURE overloadme(string1 IN char)

PROCEDURE overloadme (string1 IN varchar2)

� The datatype family of at least one of the parameters of overloaded programs

must differ.

MKICS PL/SQL Packages

Prepared By Heena Patel (Asst. Prof) Page 7

� INTEGER, REAL, DECIMAL, FLOAT, etc., are NUMBER subtypes.

� CHAR, VARCHAR2, and LONG are character subtypes.

� If the parameters differ only by datatype within the supertype or family of

datatypes, PL/SQL does not have enough information with which to determine

the appropriate program to execute/

• The parameter list of overloaded function must be differ by more than name or

parameter mode

 The following two procedures cannot be overloaded,

PROCEDURE OverloadMe (P_TheParameter IN NUMBER)

PROCEDURE OverloadMe (P_TheParameter OUT NUMBER)

• Overloaded function must differ by more than their return type.

For example the following functions cannot be overloaded :

FUNCTION OverloadMeToo RETURN DATE;

FUNCTION OverloadMeToo RETURN NUMBER;

• All the overloaded modules must be defined within the same PL/SQL scope or

block(PL/SQL block or package)

Example

PROCEDURE DEVELOP_ANALYSIS (QUARTER_END_IN IN DATE, SALES_IN IN NUMBER)

IS

 PROCEDURE REVISE_ESTIMATE (DATE_IN IN DATE) IS

 BEGIN

 PROCEDURE REVISE_ESTIMATE (DOLLAR_IN IN NUMBER) IS

 BEGIN

 . . .

 END;

 BEGIN

 REVISE_ESTIMATE(QUARTER_END_IN);

 REVISE_ESTIMATE(DOLLARS_IN);

 END;

 END;
Pl/sql displays the error message because the scope and visibility of both the procedures

is different.

https://docstore.mik.ua/orelly/oracle/prog2/ch15_08.htm

